Keep a Window Visible

Prevent users from moving windows offscreen, work with unsafe and unchecked
code, and make a field variable declaration behave like a constant.

Technology Toolbox

o VB.NET

o Cc#

2 SQL Server 2000
O ASP.NET

a XML

o VB6

™ Note:

Karl E. Peterson’s solution
also works with VB5.

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these resources.

Download

VS02090A Download the code for

this article, which includes VB6
code demonstrating how to keep a
form fully onscreen, and VB.NET
and C# code showing how to use

read-only variables.
Discuss

VS0209QA_D Discuss this article in

the C# forum.
Read More

VB02090A _T Read this article -

online.

VB0102JF_T “Drill Down on
VB.NET” by James Foxall

46

s Keep Your
Window Visible

How can I preventa user from movinga window
off the screen? I'd like to allow users to move a
window around the desktop at will, but not
allow them to move any part of the window off
the desktop. The entire window must be view-
able at all times.

A:

Hopefully, this is a client specification and not
amethod to keep some sort of popup advertise-
ment perpetually in someone’s face. (Online, a
<g> would probably follow, but irritating users
is rarely funny.) Assuming a legitimate need, the
simple answer is that you’d want to hook your
form’s message stream and respond to incoming
WM_MOVING messages (see Additional Re-
sources). If you don’t have a favorite drop-in
subclassing module, I'd urge you to grab
HookMe.zip from my Web site or this column’s
sample code (download the code from the VSM
Web site; see the Go Online box for details).

Windows sends WM_MOVING messages
to a window immediately
prior to the user getting any
feedback. These messages
areaccompanied by a point-
er to a RECT structure in
IParam that contains the
drag rectangle coordinates
Windows displays to the
user. You're only given a
pointer, so you need to copy
the data at this address to a
RECT structure declared
withinyour hook procedure
(see Listing 1).

| Configuration Propeties
% Build
Debugging
Advanced

MyClassLibrary Property Pages

- Dptimize code

(Edtoes W otnings |

‘Warning Level
Treat Waqungs As Erors True
Qutput Path bin\Debug
XML Documentation File

' | Generate Debugging Information True

| Register for COM interop False

by Karl E. Peterson, Juval Lowy,
and Mattias Sjogren

sure that none of the edges go past the edge of the
screen, and if they do, correct them to remain
onscreen. After any necessary modifications,
copy the updated structure back to the same
address passed in IParam and tell Windows
you've handled the message by returning True
for the function result. —K E.P.

Q: Work With Unsafe Code
I hear you can do pointers in C#, and that you
can manipulate memory that way. How is it
done? Is the memory still managed by .NET? Is
the code still managed code?

A:

C# does support direct memory manipulation
using pointers. Such C# code is called unsafe
code, because this code lets go of most of the
safety of .NET memory management. How-
ever, unsafe code is still managed code, because
it runs in the Common Language Runtime
(CLR), and .NET still garbage collects it. C#
supports unsafe code to ease the task of porting
legacy C++ applications to C# in cases that use

Conditional Compilation Constants

DEBUG.TRACE /
False
ck for True _:A

Alow unsafe code blocks Fale

Warning level 4

At this point, you're free
to examine the RECT coor-
dinates and even modify
them to suit your needs. In
this case, you’d want to en-

VISUAL STUDIO MAGAZINE

Figure 1 Configure Project Settings. The Properties page lets you
configure project settings, including warning level, unsafe code sup-
port, unchecked code support, and treating warnings as errors. You
can configure different settings for Debug and Release builds.

SEPTEMBER 2002 www.visualstudiomagazine.com

VB5, VB6 ¢ Intercept and Adjust Window Movements

B

Option Explicit

Private Declare Sub CopyMemory Lib "kernel32" _
Alias "Rt1MoveMemory" (Destination As Any, _
Source As Any, ByVal Length As Long)

Private Const WM_MOVING As Long = &H216

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

Vokkkkhkhkhkhkhkkkkkhkhkhkhkhkhhkhkhkhkhhhh kb kkhhkkkhhhkk

' Subclassing
Tokkkkhkhkkkhhhkkhkhkhkhkhkkkhhhhkkkhhhhhhkhhkhkhkhkkkkkkkx

Friend Function WindowProc(hWnd As Long, _

Msg As Long, wParam As Long, 1Param As Long) _
As Long

Dim Result As Long

Dim r As RECT

Dim dX As Long

Dim dY As Long

' Precalculate screen dimensions.
dX = Screen.Width \ Screen.TwipsPerPixelX
dy Screen.Height \ Screen.TwipsPerPixelY

Il

Select Case Msg

Call CopyMemory(r, ByVal 1Param, _

Len(r))

' Adjust to prevent window from going offscreen.
If r.Left < 0 Then

r.Right

r.Left = 0

End If

If r.Top < 0 Then
r.Bottom
r.Top = 0

End If

If r.Right > dX Then
r.Left = dX - (r.Right - r.Left)
r.Right =

End If

If r.Bottom > dY Then
r.Top = d¥Y -
r.Bottom

End If

r.Right - r.Left

r.Bottom - r.Top

dx

(riBattom —“r.Tep)
dy

' Update drag rectangle for Windows.
Call CopyMemory(ByVal 1Param, r, Len(r))
' Let Windows know we've handled this.
Result = True

Case Else
' Pass along to default window procedure.
Result = InvokeWindowProc(hWnd, Msg, _
wParam, 1Param)
End Select

' Return desired result code to Windows.

Case WM_MOVING

' Grab screen coordinates of drag rectangle.

End Function

WindowProc = Result

Listing 1 You can alter the position displayed as the user drags a window about the screen. Intercept the WM_MOVING message and alter
the contents of the rectangle structure used by Windows to position the window's drag rectangle.

complex pointer arithmetic. This is prob-
ably why VB.NET doesn’t support unsafe
code.

Unsafe code also comes in handy when
interoperating with Win32 API calls that
require pointers. C# unsafe code uses C-
like pointer syntax for the most part. You
can only use unsafe code at a method’s
scope by prefixing the method definition
with the reserved word “unsafe,” then us-
ing C-pointer syntax for direct memory
manipulation:

unsafe public void
MyUnsafeMethodl(int*
ptr)

Debug.Assert(ptr != null);
*ptri= 3;

You can only apply the unsafe qualifier to
methods and properties, not to individual
statements or class member variables. Note
one important programming detail when
dealing with unsafe code: You must pin
down the memory sections you interact with
directly, using a fixed statement, because

VISUAL STUDIO MAGAZINE + SEPTEMBER 2002 -«

garbage collection can start at any moment
and move objects around in memory. The
fixed statement takes this form:

fixed(type* ptr = expr)

It pins down the object ptr points at, while
the expression in the statement executes:

unsafe void UnsafeArrayAccess()
{
int[] intArray = new int[3];
fixed(int* ptr = intArray)
{

*ptr sfid
*(ptr+l) = 2;
®lpErt2) = 3;

*(ptr+3) = 4;//compiles, but
unsafe and may cause error
}

You don’t need to pin down unsafe
access to value types because value types are
stack allocated, so they aren’t subjected to
garbage collection:

struct Point

www.visualstudiomagazine.com

public int x;
public int y;
}
//using unsafe struct
unsafe void UnsafeStructUsage()
{
Point point;
point.x = 1;
point.y = 2;

Point* pPoint = &point;
pPoint->x = 3;
pPoint->y = 4;

The C# compiler doesn’t support unsafe
code by default—you must enable it explic-
itly in your project configuration. In the
Project Properties page, select Build, and set
the “Allow unsafe code blocks” dropdown
box to True (see Figure 1). —/.L.

s Understand Checked

and Unchecked Code

What is checked code? How is it different

from normal C# code? Is it the same as
managed code?

47

A:

By default, the C# compiler and the CLR don’t check for overflow
or underflow after performing arithmetic operations. This is called
unchecked code. As a result, you might get erroneous results
without knowing it, even though it’s valid managed code. For
example, consider the CalcPower() method that returns the result of
a specified number raised to a specified power:

int CalcPower (int num,int power)
{

int result = 1;

for(int i = 1;i<=power;i+t+)

{

result *= num;
)
return result;

Because int is only 32 bits long, trying to calculate CalcPower-
(10,11) returns the bogus result of 1,215,752,192 instead of
100,000,000,000. You can instruct the C# compiler to throw an
exception of type OverflowException in case of an overflow error,
using the checked instruction:

int CalcPower(int num,int power)
{
int result = 1;

AMYUNI

PDF CONVERTER
Convert any Windows®document to
PDF* format

Concatenate and merge multiple
documents into one lﬂ)F ﬂ'i'e it

Add bookmarks and hy?erllnks to the
resulting PDF documen

Interface with most Windows®
programming languages

AMYUNI Consultants Contacts

Info: sales@amyuni.com
Evaluation: www.amyuni.com

Available versions
+ Single-user or server license
+ Royalty-free Developer license

« Unlimited Site license EUROPE
+ Open source-code license Sales: (+33) 130 6107 97
+ OEM License AMERICAS

Sales: (703) 937 3619

AMYUNI
PDF CREATOR
View, Edit and Print PDF* documents

Create complex documents, forms
and reports linked to your database

Comes as an ActiveX component for
easy integration into your application

* Portable Document Format

Visit us also at:
www.amyuni.co.uk
www.amyuni.fr

Chmsuleants [

WWWw.amyuni.com

are proverty of their respective owners.© 2001 AMYUN! Consultants. all riahts reserved.

48 VISUAL STUDIO MAGAZINE *

for(int i = 1;i<=power;i++)
{

checked
{
result *= num;

}
return result;

Now, the calling client is aware that an error took place.
Similarly, you can flag a code segment as explicitly unchecked using
the unchecked instruction:

unchecked
{
//some code

You can nest checked or unchecked statements inside each other.
By default, the C# compiler generates unchecked code. To enable
support for checked code, open the Project Properties page, select
Build, and set “Check for Arithmetic Overflow/Underflow” to True
(see Figure 1). You should use checked code for the “usual suspects™ —
that is, calculating powers, calculating factorials, and so on. —/.L.

Declare Constant

Q:
Object Variables

I wrote a class and now I want to declare a constant instance of that
class, butthe VB.NET compilerwon’tlet me. Is there a workaround?

A:

The only types you’re allowed to use ina VB.NET Const statement
are the ones you can write literals for. These are the primitive types
(numeric types, Boolean, Char, Date), String, and Object. The only
value you can initialize an Object constant to is Nothing, because no
allocation can occur.

The same rules apply to C#, except it doesn’t provide a way to
write date literals, so it doesn’t support DateTime constants. On the
other hand, it allows you to declare a null constant of any reference
type, not only Object.

Fortunately, VB.NET hasanother modifier keyword, ReadOnly,
which you can apply to a field variable declaration to make it behave
almost like a constant. You can initialize a read-only variable where
it’s declared or in a constructor, but you're not allowed to change it
after that. The compiler enforces this rule, so you get a compile error
if you try to modify a variable marked as ReadOnly in a method.

Take a look at a couple different ReadOnly variables in use (see
Listing 2). The code illustrates an important difference compared to
constants. When you use a read-only variable, you can change how
it’s initialized based on calculations and parameters passed to the
constructor. You're not limited to a single static value the way you
are when declaring a constant.

Another significant distinction between the two is related to
versioning. When you use a constant, its value is embedded in the
code everywhere it’s used. The CLR never refers to the constant field
at run time, and in fact doesn’t even load it into memory. This
wouldn’t work for a read-only field, because it’s only semi-constant,
and the VB.NET compiler can’t determine its value at compile time.

SEPTEMBER 2002 + www.visualstudiomagazine.com

G VB.NET * Compare Const With ReadOnly

~

Class Ball

Private Const PI As Double = 3.14159265
' The following doesn't work
' Public Const SmallBall As New Ball(5)

Public Shared ReadOnly SmallBall As New Ball _
LR EEY
Public Shared ReadOnly BigBall As New Ball _
(20)

Public ReadOnly Radius As Integer
Public ReadOnly Volume As Double

Public Sub New(ByVal radius As Integer)

Me.Radius = radius
Volume = 4 / 3 * PI * radius”3
End Sub
End Class

Listing 2 You use constants for only simple, static values. The ReadOnly
keyword offers more flexibility because it allows you to initialize the

variable in a constructor based on calculations and parameters.

Because of this, you should only use constants for values you’re certain

will never change. If you change a constant, you’d have to recompile

all code that uses it for the change to take effect.
Also note that the VB.NET Const keyword implies Shared,
meaning you can always access the constant without having to

instantiate the class. ReadOnly doesn’t do this, so if you want a

read-only field to be Shared, you must add the Shared keyword
explicitly. —M.S.

Karl E. Peterson is a GIS analyst with a regional transportation

planning agency and serves as a member of the Visual Studio

Magazine Technical Review and Editorial Advisory Boards. Online,
he's a Microsoft MVP and a section leader on several DevX forums.
Find more of Karl's VB samples at www.mvps.org/vb.

Juval Léwy is the principal of IDesign, a consulting
and training company focused on .NET design and
migration. Juval is the author of COM and .NET
Component Services (O'Reilly), and he speaks fre-
quently at major conferences. Juval chairs the pro-
gram committee of the .NET California Bay Area

User Group. Contact him at www.idesign.net.
Mattias Sjogren lives in southern Sweden, where he tries to combine
consulting work with university studies. He is a Microsoft MVP for
Visual Basic. Reach him at mattias@mvps.org or visit his Web site at
Www.msjogren.net.

Additional Resources

* HookMe.zip: www.mvps.org/vb/samples.htm

» “Read-Only Variables”: http://msdn.microsoft.com/library/
en-us/vbls7/html/vblrfvbspec7_5_2.asp

« “App Object Changes in Visual Basic .NET”: http:/
msdn.microsoft.com/library/en-us/vbcon/html/
vxconchangestoappobjectinvisualbasicnet.asp

VISUAL STUDIO MAGAZINE + SEPTEMBER 2002 -+ www.visualstudi

finish

finish

For the past 12 years, programmers worldwide have
recognized LEAD Technologies as the undisputed LEADer
in imaging developer toolkits. LEADTOOLS handles all of
your imaging needs, from common loading, displaying
and image processing, to the complex and high
performance imaging demands of the document, medical
and Internet industries. Whether your project requires
raster imaging, vector imaging or multimedia support, (or
all of the above!) LEADTOOLS is your solution. Why
struggle with multiple products from multiple vendors
when you can get all of your imaging development needs
in one toolkit? One toolkit...

...NOW you're an imaging expert!

, whag %
@b

%
()

i 2

IS ready for -

- W) : leadtools.com

sz K

40 pa©
.NET APl C++Lib. COM ActiveX VCL

There are versions of LEADTOOLS to fit any digital imaging
project including raster, multimedia, document, medical,
Internet and vector.

r o oo n

sales@leadtools.com or call: 800-637-4699
1201 Greenwood Cliff, Suite 400 Charlotte, NC 28204

o n oA

LEAD and LEADTOOLS are registered trademarks of LEAD Technologies, Inc.

com

49

